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After the 1916 success of general relativity that explained gravity by adding time as a
fourth dimension, physicists have been trying to explain other physical fields by adding
extra dimensions. In 1921, Kaluza and Klein has shown that under certain conditions
like cylindricity (∂gij /∂x5 = 0), the addition of the 5th dimension can explain the
electromagnetic field. The problem with this approach is that while the model itself is
geometric, conditions like cylindricity are not geometric. This problem was partly solved
by Einstein and Bergman who proposed, in their 1938 paper, that the 5th dimension
is compactified into a small circle S1 so that in the resulting cylindric 5D space-time
R4 × S1 the dependence on x5 is not macroscopically noticeable. We show that if, in
all definitions of vectors, tensors, etc., we replace R4 with R4 × S1, then conditions
like cylindricity automatically follow – i.e., these conditions become fully geometric.

KEY WORDS: 5D geometry; Kaluza–Klein theory; compactification of extra dimen-
sions; Einstein-Bergman approach to 5D models.

PACS: 11.10.Kk Field theories in dimensions other than four, 04.50.+h Gravity in
more than four dimensions.

1. PHYSICS: 5D GEOMETRY IS USEFUL

After the 1916 success of Einstein, who explained gravitation by combining
space and time into a 4D space, there have been many efforts to explain other
physical fields by adding other physical dimensions.

The first successful attempt was made by Kaluza and Klein in 1921. They
showed that if, we formally consider the equations of general relativity theory in
the 5D space, the equations for the normal 4 × 4 components gij of the metric
tensor still describe gravitation, while the new components g5i of the metric tensor
satisfy Maxwell’s equations (under the assumption that g55 = constant). Thus, if
we go to 5D space, we get a geometric interpretation of electrodynamics.

The only problem with this interpretation is that it is formal: change in
first four dimensions makes perfect physical sense, while there seemed to be no
physical effects corresponding to change in 5th dimension. To solve this problem,
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Einstein and Bergmann proposed, in 1938 (Einstein and Bergmann, 1938), that
the 5th dimension forms a tiny circle, so that only micro-particles “see” it, while
for us, the world is 4D.

This is a standard view now in particle physics; see, (Green et al., 1988;
Polchinski, 1998): space is ten-or-eleven-dimensional, all dimensions except the
first four are tiny.

2. FORMULAS FROM PHYSICAL 5D THEORIES THAT NEED TO
BE EXPLAINED IN PURELY GEOMETRIC TERMS

In addition to a nice geometric model, the traditional description of Kaluza–
Klein theory requires several additional physical formulas, formulas that look very
artificial because they do not have a direct geometric explanation.

In this paper, we will show that, if, we take the Einstein–Bergmann model
seriously, then these formulas can be derived – and thus, they are not additional
and ad hoc.

What are these formulas that do not directly follow from the geometric model?
First, the assumption g55 = const is artificial.
Second, since only four coordinates have a physical sense, the distance

�s2 = ∑5
i=1

∑5
j=1 gij · �xi · �xj between the points x and x + �x should only

depend on the first four coordinates – while in general, for a 5D metric, the terms
g55 · (�x5)2 and g5i · �x5 · �xi create a difficult-to-explain dependence on �x5.

Third, we would like to explain the fact that the observed values of physical
fields do not depend on the fifth coordinate x5, e.g., that ∂gij /∂x5 = 0 (this
condition is called cylindricity).

Several other formulas came from the attempts to give the fifth dimension a
physical interpretation. Namely, in the 1940s, Yu. Rumer showed (Rumer, 1956)
that, if we interpret x5 as action S = ∫

Ldx dt (i.e., the quantity whose extrema
define the field’s dynamics), then the fact that x5 is defined on a circle is consistent
with the fact that in quantum physics (e.g., in its Feynman integral formulation),
action is used only as part of the expression exp(iS/h), whose value is not changed
if, we add a constant 2π · h to S. (For a H atom, this idea leads to the original
Bohr’s quantization rules.)

Action is defined modulo arbitrary transformation S → S + f (xi); thus, the
corresponding transformation x5 → x5 + f (xi) should be geometrically mean-
ingful. Similar transformations stem from the electrodynamic interpretation of g5i

as Ai : gauge transformations Ai → Ai − ∂f/∂xi .

3. NATURAL IDEA AND ITS PROBLEMS

The main difference between a standard 4D space and Einstein–Bergmann’s
5D model is that we have a cylinder K = R4 × S1 (K for Kaluza) instead of a
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linear space. It is, therefore, desirable to modify standard geometry by substituting
K instead of R4 into all definitions.

The problem with this idea is that the corresponding formalisms of differential
geometry use the underlying linear space structure, i.e., addition and multiplication
by a scalar. We still have addition in K , but multiplication is not uniquely defined
for angle-valued variables: we can always interpret an angle as a real number
modulo the circumference, but then, e.g., 0 ∼ 2π while 0.6 · 0 �∼ 0.6 · 2π .

4. WHAT WE SUGGEST

We do need a real-number representation of an angle variable. A more natural
representation of this variable is not as a single real number, but as a
set {α + n · 2π} of all possible real numbers that correspond to the given angle.

Similarly to interval and fuzzy arithmetic, we can naturally define element-
wise arithmetic operations on such sets, e.g., A + B = {a + b | a ∈ A, b ∈ B}.
We can then define tensors as linear mappings that preserve the structure of such
sets, and we can define a differentiable tensor field as a field for which the set of
all possible values of the corresponding partial derivatives is also consistent with
the basic structure.

Comment These results were first announced in Kreinovich and Starks (1997);
Starks and Kreinovich (1998); Kreinovich and Nguyen (2005).

5. RESULTING FORMALISM: IDEA

In mathematical terms, the resulting formalism is equivalent to the following:
We start with the space K which is not a vector space (only an Abelian group). We
reformulate standard definitions of vector and tensor algebra and tensor analysis
and apply them to K: K-vectors are defined as elements of K; K-covectors as
elements of the dual group, etc. All physically motivated conditions turn out to be
natural consequences of this formalism.

6. K -VECTORS

In the traditional 4D space-time R4, we can define a vector as simply an
element of R4. In our case, instead of 4D space-time R4, we have a 5D space-

time K
def= R4 × S1, in which S1 is a circle of a small circumference h > 0 – i.e.,

equivalently, a real line in which two numbers differing by a multiple of h describe
the same point: (x1, . . . , x4, x5) ∼ (x1, . . . , x4, x5 + k · h). Thus, it is natural to
define K-vectors as simply elements of K:
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Definition 1. A K-vector is an element of K = R4 × S1.

On the set of all vectors in R4, there are two natural operations: (commutative)
addition a + b and multiplication by a real number λ: a → λ · a. Thus, this set is
a linear space.

In contrast, on the set K of all K-vectors, we only have addition, so the set
of all K-vectors is not a linear space, it is only an Abelian group.

7. K -COVECTORS

In physics, an important algebraic object is a covector: vectors describe the
location x of a particle, while the corresponding covector p describes the energy
and momentum of the corresponding particle. Because of this physical importance,
it is necessary to generalize the notion of covectors to the new space.

We would like to provide a generalization that preserves the physical meaning
of the connection between vectors and covectors. The physical connection is
probably best described in quantum mechanics. In quantum mechanics, due to
Heisenberg’s uncertainty principle �x · �p ≥ h̄, if, we know the exact location
of a particle (i.e., if �x = 0), then, we have no information about the momentum
(i.e., �p = ∞), and vice versa, if we know the exact momentum (�p = 0),
then we have no information about the particle’s location. In other words, if we
have a state with a definite momentum p, and we then shift the coordinates by
a vector t , i.e., replace x by x + t , the known state of the particle should not
change.

In quantum mechanics, a state of the particle is described by a complex-
valued function ψ(x) called a wave function. The wave function itself is not
directly observable, what we observe are probabilities |ψ |2. So, if we multiply all
the values of the wave-function by a complex number ϕ with |ϕ| = 1 (i.e., by a
number of the type exp(i · α), where I = √−1 and α is a real number), then all
the probabilities remain the same – i.e., from the physical viewpoint, we will have
exactly the same state. Thus, for every real number α, the functions ψ(x) and
exp(i · α) · ψ(x) describe exactly the same state. When we say that the state ψ(x)
does not change after shift x → x + t , we mean that the original function ψ(x)
and the function ψ(x + t) that describe the shifted state describe the same state
– i.e., ψ(x + t) = ϕ(t) · ψ(x) = exp(I · α(t)) · ψ(x) for some complex number
ϕ(t) or, equivalently, real number α(t) (which, generally speaking, depends on the
shift t).

Since exp(i · 2 · π ) = 1, the value α(t) is only determined modulo 2 · π . Thus,
α(t) is a point on a circle rather than a real number.

For x = 0, we get ψ(t) = ϕ(t) · ψ(0), so modulo a multiplicative constant,
shift-invariant states ψ(t) are equal to the corresponding functions ϕ(t). So, to
determine such states, we must describe all the corresponding functions ϕ(t).
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When we shift by t = 0, the function remains unchanged, i.e., ϕ(0) = 1
(equivalently, α(0) = 0).

If we first shift t and then by s, then we get the same result as if we shift once
by t + s. Hence, we have

ϕ(s) · (ϕ(t) · ψ(x)) = ϕ(t + s) · ψ(x),

so ϕ(t + s) = ϕ(t) · ϕ(s). So, from the physical viewpoint, a shift-invariant state
ϕ is a mapping from R4 to the unit circle S1 = {ϕ : |ϕ| = 1} that transform 0 into
1 and sum into sum. In mathematics, such a mapping is called a homomorphism
from an Abelian additive group R4 to S1.

It is also physically reasonable to assume that the wave function is continuous
– hence, that the homomorphism ϕ is continuous. Continuous homomorphisms
from an Abelian group G to a unit circle are called characters; the set of all such
characters is also an Abelian group called dual (and denoted by G∗). So, it is
natural to associate covectors with elements of the dual group.

For R4, this definition fits well with the more traditional one, because it
is known that for R4, the dual group is also R4: every character has the form
exp(i · p · x). For K = R4 × S1, we get a new definition:

Definition 2. A K-covector is a character of the group K , i.e., a continuous
homomorphism from K to S1. By a sum of two covectors, we mean the product
of the corresponding homomorphisms.

The set of all K-covectors is thus a dual group K∗ to K . It is known that ele-
ments of this dual group have the form exp(i · p · x), where p = (p1, . . . , p4, p5),
p1, . . . , p4 can be any real numbers, and p5 is an multiple of 1/h. Thus, the group
K∗ of all K-covectors is isomorphic to R4 × Z, where Z is the additive group of
all integers.

Comment K-vectors are simply elements x = (x1, . . . , x5) of R5, some of which
are equivalent to each other: x ∼ x ′ if x5 − x ′

5 = k · h for some integer k. In other
words, a K-vector can be viewed as a set

{x ′ : x ′ ∼ x} = {(x1, . . . , x4, x5 + k · h)}.

A unit circle S1 can also be described as simply the set R of all real num-
bers with the equivalence relation α ∼ α′ if and only if α − α′ = k · (2 · π ) or,
equivalently, as the class of sets {α + k · (2 · π )}.

In these terms, we can alternative describe K-covectors as linear mappings
x = (x1, . . . , x5) → p · x = ∑

pi · xi from R5 to R that are consistent with the
above structures, i.e., mapping for which x ∼ x ′ implies p · x ∼ p · x ′.



594 Starks, Kosheleva, and Kreinovich

8. K -TENSORS

To describe individual particles, it is usually sufficient to consider vectors (that
describe their location) and covectors (that describe their momentum). However, to
describe field theories such as Maxwell’s theory of electromagnetism or Einstein’s
General Relativity theory, it is not sufficient to consider only vectors and covectors,
we also need to consider tensors.

Specifically, for G = R4, for every two integers p ≥ 0 and q ≥ 0, a tensor
of valence (p, q) can be defined as a multi-linear map Gp × (G∗)q → R – where
multi-linear means that if, we fix the values of all the variables but one, we get a
linear mapping. Every such multi-linear mapping has the form

xi1 , . . . , yip , zj1 , . . . , ujq
→

∑
i1,...,ip,j1,...,jq

t
j1...jq

i1...ip
· xi1 · . . . · yip · zj1 · . . . · ujq

for some components t
j1...jq

i1...ip
. We, thus, naturally arrive at the following definition:

Definition 3. Let G1, . . . ,Gm,G be continuous Abelian groups. A mapping
t : G1 × . . . × Gm → G is called Z-multi-linear if for every i, if we fix the values
of all the variables except i-th, we get a homomorphism.

Definition 4. Let p ≥ 0 and q ≥ 0. By a K-tensor of valence (p, q), we mean a
continuous Z-multilinear mapping t : Kp × (K∗)q → S1.

Comments For R4 instead of K , this definition coincides with the traditional
one.

When K = R4 × S1, this definition is consistent with the previous ones:
K-tensors of valence (0, 1) are K-covectors, and K-tensors of valence (1, 0) are
K-vectors.

This definition can be reformulated as follows: a K-tensor is a multi-linear
mapping that is consistent with the equivalence sets structure, i.e., for which
x ∼ x ′, . . . , y ∼ y ′ implies that t(x, . . . , y, z, . . . , u) ∼ t(x ′, . . . , y ′, z, . . . , u).

Two multi-linear mappings t and t ′ describe the same K-tensor if
t(x, . . . , y, z, . . . , u) ∼ t ′(x, . . . , y, z, . . . , u) for all x, . . . , y, z, . . . , u.

The following result describes all such mappings:

Proposition 1.

• Every K-tensor has the form

exp


i ·

∑
I1,...,Ip,j1,...,jq

t
j1...jq

I1...Ip
· xI1 · . . . · yIp · zj1 · . . . · ujq
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for some components t ...... . In this representation, of all the components in
which one of the lower indices is 5, only a component t5...5

5 can be nonzero,
and it can only take values 2 · π ·hq−1 · k for some integer k.

• Vice versa, if we have a set of components t ...... in which of all the components
in which one of the lower indices is 5, only a component t5...5

5 may be
nonzero, its value is 2 · π ·hq−1 · k for some integer k, then the above
formula defines a K-tensor.

• Two sets of components t ...... and s...
... define the same K-tensor if and only

if all their components coincides with a possible exception of components
t5...5 and s5...5 which may differ by 2 · π · hq · k for an integer k.

Comment For readers’ convenience, all the proofs are given in the Appendix.

9. EXPLAINING THE CONDITION g55 = CONSTANT AND
THE FACT THAT METRIC DOES NOT DEPEND ON x5

For gij , Proposition 1 implies that g55 = g5i = 0. Thus, the above geometric
formalism explains the first two physical assumptions that, we wanted to explain:
that g55 = 0 and that the distance �s2 = ∑5

i=1

∑5
j=1 gij · �xi · �xj between the

two points x and x + �x only depends on their first four coordinates.

10. DIFFERENTIAL FORMALISM FOR K -TENSOR FIELDS

Definition 5. By a K-tensor field f ...
... (x) of valence (p, q), we mean a mapping

that assigns, to every point x ∈ K , a K-tensor f ...
... (x) of this valence.

Most physics is described in the language of differential equations. It is
known that for every tensor field t

j1...jq

i1...ip
of valence (p, q), its gradient ∂t

j1...jq

i1...ip
/∂xm

is also a tensor field – of valence (p + 1, q). This new field is called a gradient
tensor field. It is, therefore, natural to give the following definition:

Definition 6. We say that a K-tensor field of valence (p, q) is differentiable if
the corresponding component tensor field is continuously differentiable, and its
gradient field also defines a K-tensor field.

In other words, to differentiate a K-tensor field, we form the corresponding
tensor field, differentiate it, and then interpret the result as a K-tensor field of
valence (p + 1, q). When is this possible? The answer to this question is as
follows:
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Proposition 2. The K-tensor field is differentiable if and only if all its components
t ...... do not depend on x5, with the possible exception of the component t5...5 which
may have the form 2 · π · hq−1 · x5 + f (x1, . . . , x4).

11. CYLINDRICITY EXPLAINED

As a result of Proposition 2, we conclude that for all the components t (except
for angular-valued ones), we have the cylindricity condition ∂t ...... /∂x5 = 0. Thus,
the cylindricity conditions is also explained by the geometric model.

12. LINEAR COORDINATE TRANSFORMATIONS

In the traditional affine geometry, in addition to shifts, we can also consider
arbitrary linear coordinates transformations. In geometric terms, we can define
these transformations as continuous automorphisms of the additive group K0 =
R4. We can define vectors and tensors as continuous homomorphisms T : K

p

0 ×
(K∗

0 )q → S1; in this case, e.g., standard formulas for transforming covectors (i.e.,
continuous homomorphisms g : K0 → S1) can be uniquely determined by the
requirement that the value g(a) be preserved under such a transformation, i.e., that
g′(a′) = g(a). Similarly, the transformation law for tensors can be determined by
the condition that

t ′(a′
1, . . . , a

′
p, b′

1, . . . , b
′
q) = t(a1, . . . , ap, b1, . . . , b1). (1)

Similarly, for K = R4 × S1, we can define a K-linear transformation as
follows:

Definition 7. By a K-linear transformation, we mean a continuous automorphism
of the additive group of K .

Proposition 3. Every K-linear transformation has the form

x5 → ±x5 +
4∑

i=1

Ai · xi ; xi →
4∑

j=1

bi
j x

j , (i ≤ 4).

The corresponding tensor transformations can be defined by the condition (1).
Once can see that in this case, the tensor components are transformed just like the
normal tensor components. In particular, under the above K-linear transformation,
a covector is transformed as follows:

x5 → ±x5, xi →
4∑

i=1

c
j

i xj − Ai · x5,
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where c
j

i is the matrix that is inverse to bi
j .

13. GENERAL COORDINATE TRANSFORMATIONS

Definition 8. A smooth transformation s : K → K is admissible if and only if
for each point x ∈ K , the corresponding tangent transformation

ai → ai
new =

5∑
j=1

∂si

∂xj |x
ai

is a K-linear transformation.

Proposition 4. Every admissible transformation has the form

x5 → ±x5 + f (x1, . . . , x4), xi → f i(x1, . . . , x4).

Comment We have already mentioned that functions on K = R4 × S1 are simply
functions on R5 which are periodic in x5 with the period h. Also, a K-covector p

can be simply viewed as a covector for which the fifth component p5 is an integer
multiple of 1/h. Thus,, e.g., a K-covector field on K can be viewed as a covector
field p(x) = (p1(x), . . . , p5(x)) on R5 that satisfies the following two properties:

(a) this field is periodic in x5 with period p;
(b) for each x, the value p5(x) is an integer multiple of 1/h.

It is, therefore, reasonable to define a general coordinate transformation of K as
a coordinate transformation of R5 that preserves this property, i.e., under which
a covector field that satisfies the properties (a) and (b) are transformed into a
covector field that also satisfies these properties. One can see that this leads to the
same class of general coordinate transformations.

14. GAUGE TRANSFORMATIONS EXPLAINED

According to Proposition 4, every admissible transformation is a compo-
sition of a 4D transformation and an additional gauge transformation x5 →
x5 + f (x1, . . . , x4) – exactly as described by Rumer.

15. CASE OF CURVED SPACE-TIME

In modern physics, space-time is a manifold, i.e., a topological space V which
is locally diffeomorphic to R4. Since our basic model is not R4, but K = R4 × S1,
it is reasonable to define a K-manifold as a topological space that is locally
diffeomorphic to K .



598 Starks, Kosheleva, and Kreinovich

From the mathematical viewpoint, K is R5 factorized over the vector e =
(0, . . . , 0, h): i.e., a ∼ b if and only if a − b is an integer multiple of e. Thus, a
natural way to describe a K-manifold is to describe a standard 5D manifold in
which we have a vector e(x) in every tangent space – i.e., a manifold with an
additional vector field.

In this case, every tangent space is isomorphic to K . Thus, a K-tensor field
can be defined as a mapping that maps every point x ∈ V into a K-tensor defined
over the space K which is tangent at x.

16. AUXILIARY RESULT: WHY THERE IS NO PHYSICALLY USEFUL
GRAVITATIONAL ANALOG OF HERTZ POTENTIAL

In electromagnetism, in addition to the electromagnetic field Fij and the
potential Ai from which this field can be obtained by differentiation Fij =
∂Ai/∂xj − ∂Aj/∂xi , there is also a useful notion of a Hertz potential Hik for
which Ai can be obtained by differentiation Ai = ∑

k ∂H ik/∂xk .
In gravitation, the natural analogy of potentials Ai is the gravity tensor

filed gij . From the purely mathematical viewpoint, it is possible to introduce a
gravitational analog of the Hertz potential: namely, there exists a tensor field �ijk

for which

gij =
∑

k

∂�ijk

∂xk
; (2)

see, e.g., (Palchik, 1969). However, in contrast to the electromagnetic case, this
new potential does not seem to have any physical applications. Why?

Our explanation is simple: while (2) is impossible in the 4D case, it is no
longer possible if we consider 5D Ktensor fields.

APPENDIX: PROOFS

Proof of Proposition 1

Let us first prove that every K-tensor can be described by the desired formula.
Indeed, let t be a K-tensor. Let us first consider the restriction of t to Kp ×

(R4)q . Since locally, K coincides with R5, this restriction is, locally, a multi-linear
map from (R5)p × (R4)q to S1. Since it is multi-linear, at 0, the value of this map
is 1. In a small vicinity of 1, we can define a unique angle (1/i) · ln t . The resulting
mapping is – locally – a multi-linear mapping, in the traditional sense of this term,
from (R5)p × (R4)q to R. Hence, in this vicinity, ln t = i · ∑

t ...... · xi1 · . . . So, for
the restriction of t to Kp × (R4)q , we get the desired formula.
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Similarly, for K0
def= (R5)m × R4 × . . . × R4 . . . × e × R4 × . . . × R4, with

rth term replaced by e
def= (0, 0, 0, 0, h−1), we conclude that the restriction of t to

K0 has the form

exp
(

i ·
∑

t
j1...jr−15jr+1...jq

i1...ip
· xi1 · . . . · yip · zj1 · . . . · ujq

)

for some values t
j1...jr−15jr+1...jq

i1...ip
. Since the restriction of t to the rth copy of K∗

is a homomorphism, this formula also holds for elements of (R5)m × R4 × . . . ×
R4 . . . × Z × R4 × . . . × R4,

Similar formulas hold for the subsets that can be obtained by replacing some
of K∗ = R4 × Z with R4 and some by Z. Since t is a homomorphism with respect
to each of its variables, we can represent each element p = (p1, . . . , p4, p5) ∈ K∗

as a sum of p(4) = (p1, . . . , p4, 0) ∈ R4 and p(5) = (0, . . . , 0, p5) ∈ Z. For each
of these two vectors, we have the desired formula; multiplying them, we get a
similar formula for p. By using a similar decomposition with respect to other
variables, we get the desired formula for all possible inputs from Kp × (K∗)q .

Let us now prove the desired properties of the components t ...... . Since t is
defined on Kp × (K∗)q , replacing x5 with x5 + h should change the sum

∑
i1,i2,...,ip,j1,...,jq

t
j1...jq

i1i2...ip
· xi1 · di2 . . . · yip · zj1 · . . . · ujq

by an integer multiple of 2 · π . In other words, the difference between the new
sum and old sum, i.e.,

h ·
∑

5,i2,...,ip,j1,...,jq

t
j1...jq

5i2...ip
· di2 · . . . · yip · zj1 · . . . · ujq

must be a multiple of 2 · π for all di2 , . . . , yip .
Let us first consider the case p > 1. For di2 = . . . = yip = 0, the difference

is equal to 0; this difference continuously depends on di2 , . . . , yip , and it is only
allowed a discrete set of values. Due to continuity, it cannot “jump” to values
2 · π · k for k �= 0, hence it is always equal to 0. So, the above polynomial is
identically 0, hence all its coefficients t

j1...jq

5i2...ip
are identically 0.

Similarly, we can prove that t
i1...
5 = 0 if i1 �= 5, so t5...5

5 is indeed the only
nonzero component of t ...... for which one of the lower indices is 5. For this compo-
nent, the fact that h · t5...5

5 · p5 · . . . · p5 = 2 · π · k, where p5 = 1/h, leads to the
desired formula for t5...5

5 .
To complete the proof, let us assume that the two sets of coefficients t ...... and

s...
... define the same K-tensor. This means that for their difference δ...

... , the sum
∑

i1,...,ip,j1,...,jq

δ
j1...jq

i1...ip
· xi1 · . . . · yip · zj1 · . . . · ujq
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is an integer multiple of 2 · π for all xi1 , . . . , yip ∈ K and zj1 , . . . , ujq
∈ K∗. If

p > 0, and one of the indices j1, . . . , jq is different from 5, then, as above, we
can conclude that the sum is always 0,

So, all the corresponding coefficients δ...
... are identically 0. The only possibly

nonzero coefficient is δ5...5. For this coefficient, the value δ5...5p5 · . . . · p5, with
p5 = 1/h, must be proportional to 2 · π – so δ5...5 · (1/h)p = 2 · π · k for some
integer k. Hence, the difference between s5...5 and s5...5 is indeed proportional to
2 · π · hp. The proposition is proven.

Proof of Proposition 2.

According to Proposition 1, the only possibly nonzero component of a
Ktensor with 5 as one of the lower indices is the component t5...5

5 . All the values

∂t
j1...jq

i1...ip
/∂x5 contain 5 as one of the lower indices, so the only component for which

this value can be different from 0 is the one with p = 0 and i1 = . . . = ip = 5.
For this component, ∂t5...5/∂x5 = 2 · π · hp−1 · k. Since the Ktensor field is con-
tinuously differentiable, this value cannot jump to a different value of k, so this
derivative is constant. Integrating over x5, we get the desired formula for the
dependence of this component on x5 – as a linear function of x5.

Proof of Proposition 3.

Since K locally coincides with R5, its continuous automorphisms locally co-
incide with continuous automorphisms R5 → R5, i.e., with linear transformations

x5
new = A5 · x5 +

4∑
i=1

Ai · xi ; xi
new = Bi · x5 +

4∑
j=1

bi
j x

j .

If y5 = x5 + h and yi = xi for all other i, then x and y define the exact same point
in K . Therefore, the new values xnew and ynew must also define the same point,
hence yi

new = xi
new for i = 1, . . . , 4 (hence Bi = 0) and y5

new − x5
new = integer

multiple of h (hence A5 is an integer).
Reversibility implies that A−1

5 should also be an integer, hence A5 = ±1.

Proof of Proposition 4.

The condition that the tangent transformation is K-linear means that
∂s5/∂x5 = ±1 (and due to continuity this does not depend on the point x, i.e., ei-
ther it is everywhere equal to 1, or it is everywhere equal to −1), and ∂si/∂x5 = 0
for i < 4. Hence, s5 = ±x5 + f (x1, . . . , x4) and si = f i(x1, . . . , x4) for i < 5.
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Proof of a the statement about Hertz potentials

As we have mentioned, it is possible that ∂g55/∂x5 �= 0. However, if the
representation (2) was possible, then we would have

∂g55

∂x5
= ∂2�555

(∂x5)2
+

4∑
i=1

∂2�55i

∂xi∂x5
.

However, according to our general result about components of Ktensors, all the
terms in the right-hand side are 0s, so their sum cannot be equal to a nonzero value
∂g55/∂x5.
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